Communication

On the Chemistry of $\mathbf{Z n} \mathbf{n} \mathbf{Z n}$ Bonds, $\mathrm{RZn}-\mathbf{Z n R}(\mathrm{R}=$ [\{(2,6-PrCH)N(Me)C\}CH]): Synthesis, Structure, and Computations
Yuzhong Wang, Brandon Quillian, Pingrong Wei, Hongyan Wang, Xiao-Juan Yang, Yaoming Xie, R. Bruce King, Paul v. R. Schleyer, H. Fritz Schaefer, and Gregory H. Robinson
J. Am. Chem. Soc., 2005, 127 (34), 11944-11945•DOI: 10.1021/ja053819r • Publication Date (Web): 04 August 2005

Downloaded from http://pubs.acs.org on March 25, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 33 articles that cite this article, as of the time of this article download
- Access to high resolution figures

ACS Publications

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

On the Chemistry of $\mathbf{Z n}-\mathbf{Z n}$ Bonds, RZn-ZnR $\left(R=\left[\left\{\left(2,6-\operatorname{Pr}_{2}{ }_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{N}(\mathrm{Me}) \mathrm{C}\right\}_{2} \mathrm{CH}\right]\right)$: Synthesis, Structure, and Computations

Yuzhong Wang, Brandon Quillian, Pingrong Wei, Hongyan Wang, Xiao-Juan Yang, Yaoming Xie, R. Bruce King, Paul v. R. Schleyer, H. Fritz Schaefer, III, and Gregory H. Robinson*

Department of Chemistry and the Center for Computational Chemistry, The University of Georgia, Athens, Georgia 30602-2556
Received June 10, 2005; E-mail: robinson@chem.uga.edu

The recent preparation of the first compound containing a $\mathrm{Zn}-$ Zn bond, $\mathrm{Cp} * \mathrm{Zn}-\mathrm{ZnCp}^{*}\left(\mathrm{Cp}^{*}=\mathrm{C}_{5} \mathrm{Me}_{5}\right), \mathbf{1},{ }^{1,2}$ is a remarkable achievement. The characterization of other such compounds is desirable for further exploration of $\mathrm{Zn}-\mathrm{Zn}$ bond chemistry. ${ }^{3-6} \mathrm{To}$ this end, we now report the synthesis and molecular structure ${ }^{7}$ of the second compound with a $\mathrm{Zn}-\mathrm{Zn}$ bond, $\mathrm{RZn}-\mathrm{ZnR}(\mathrm{R}=[\{-$ (2,6- $\left.\left.\left.\left.\mathrm{Pr}^{i}{ }_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{N}(\mathrm{Me}) \mathrm{C}\right\}_{2} \mathrm{CH}\right]\right), 2$ (Dipp $=$ 2,6-diisopropylphenyl).

2

Our route to 2 began with the preparation of the lithium derivative, $\mathrm{RLi}\left(\mathrm{R}=\left[\left\{\left(2,6-\operatorname{Pr}_{2}{ }_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{N}(\mathrm{Me}) \mathrm{C}\right\}_{2} \mathrm{CH}\right]\right)^{8}$ followed by its reaction with ZnI_{2} in $\mathrm{Et}_{2} \mathrm{O}$ to give $\mathrm{RZn}(\mu-\mathrm{I})_{2} \mathrm{Li}\left(\mathrm{OEt}_{2}\right)_{2} .{ }^{9}$ Potassium reduction of $\mathrm{RZn}(\mu-\mathrm{I})_{2} \mathrm{Li}\left(\mathrm{OEt}_{2}\right)_{2}$ affords 2 as colorless, air- and moisture-sensitive crystals (eq 1).

$$
\begin{equation*}
\mathrm{RZn}(\mu-\mathrm{I})_{2} \mathrm{Li}\left(\mathrm{OEt}_{2}\right)_{2} \xrightarrow{K} \mathbf{2} \tag{1}
\end{equation*}
$$

Supporting computations on related $\mathrm{RZn}-\mathrm{ZnR}$ systems provide insight into the nature of the $\mathrm{Zn}-\mathrm{Zn}$ bond.

Compounds with homonuclear metal-metal bonds of the heavier group 12 metals, cadmium ${ }^{10,11}$ and mercury, ${ }^{12}$ are well-known. Alkali or alkaline earth metal reduction of metal halides, complexed by sterically demanding ligands, has proven to be a fruitful synthetic approach to compounds containing main group metal-metal bonds ${ }^{13-16}$ and main group metal-transition metal bonds. ${ }^{17-19} \mathrm{We}$ applied this approach to the preparation of $\mathbf{2}$ by utilizing the wellknown sterically encumbered β-diketiminate ligand, [$\{(2,6-$ $\left.\left.\left.\operatorname{Pr}^{i}{ }_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{N}(\mathrm{Me}) \mathrm{C}\right\}_{2} \mathrm{CH}\right]^{-} .{ }^{20-22}$ This β-diketiminate ligand has been used to stabilize an $\operatorname{In}-\operatorname{In}$ bond, $\mathrm{R}(\mathrm{Cl}) \operatorname{In}-\operatorname{In}(\mathrm{Cl}) \mathrm{R},{ }^{23}$ and a recently reported $\mathrm{Mn}-\mathrm{Mn}$ bond, $\mathrm{RMn}-\mathrm{MnR} .{ }^{24}$

X-ray structure analysis confirms the dimeric nature of 2 and the central $\mathrm{Zn}-\mathrm{Zn}$ bond (Figure 1). The two ligands are arranged in a nearly orthogonal orientation with a $\mathrm{N}(1)-\mathrm{Zn}(1)-\mathrm{Zn}(2)-\mathrm{N}(3)$ torsion angle of 86.6°, thus providing effective steric protection of the $\mathrm{Zn}-\mathrm{Zn}$ bond (Figure 1 b). The $\mathrm{Zn}-\mathrm{Zn}$ distance in 2, 2.3586(7) \AA, is only about $0.05 \AA$ longer than that of $2.305(3) \AA$ reported for 1. However, the $\mathrm{Zn}-\mathrm{Zn}$ bond lengths for $\mathbf{1}$ and $\mathbf{2}$ are notably shorter than the $\mathrm{Zn} \cdots \mathrm{Zn}$ separation of $2.4513(9) \AA$ in the related zinc hydride dimer, $\mathrm{RZn}(\mu-\mathrm{H})_{2} \mathrm{ZnR}\left(\mathrm{R}=\left[\left\{\left(2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{N}(\mathrm{Me}) \mathrm{C}\right\}_{2^{-}}\right.\right.$ $\mathrm{CH}]) .{ }^{25}$ Moreover, the ${ }^{1} \mathrm{H}$ NMR resonance for the bridging zinc hydride in $\mathrm{RZn}(\mu-\mathrm{H})_{2} \mathrm{ZnR}$ was found at 4.59 ppm . This value is

(a)

(b)

Figure 1. (a) Molecular structure of 2 (thermal ellipsoids are shown at 30% probability levels). Selected bond distances (\AA) and angles (deg): $\mathrm{Zn}-$ (1) $-\mathrm{Zn}(2) 2.3586(7), \mathrm{Zn}(1)-\mathrm{N}(1) 2.005(3), \mathrm{Zn}(1)-\mathrm{N}(2) 2.013(3), \mathrm{Zn}(2)-$ $\mathrm{N}(3)$ 2.014(3), $\mathrm{Zn}(2)-\mathrm{N}(4) 2.010(3) ; \mathrm{N}(1)-\mathrm{Zn}(1)-\mathrm{N}(2) 93.65(13), \mathrm{N}(1)-$ $\mathrm{Zn}(1)-\mathrm{Zn}(2)$ 131.12(9), $\mathrm{N}(2)-\mathrm{Zn}(1)-\mathrm{Zn}(2)$ 134.10(9), $\mathrm{N}(3)-\mathrm{Zn}(2)-\mathrm{N}(4)$ 93.43(13), $\mathrm{N}(3)-\mathrm{Zn}(2)-\mathrm{Zn}(1) 132.62(9), \mathrm{N}(4)-\mathrm{Zn}(2)-\mathrm{Zn}(1) 132.76(10)$. (b) Space filling model of 2.
close to the 4.56 ppm reported for a tris(pyrazolyl)hydroborato complex with a terminal $\mathrm{Zn}-\mathrm{H} .{ }^{26}$ The fact that no such zinc hydride ${ }^{1} \mathrm{H}$ resonance was observed for $\mathbf{2}$, coupled with supporting structural and computational data (vide infra), further affirms 2.

The six-membered $\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{Zn}$ rings of $\mathbf{2}$ are not planar but adopt a puckered conformation with the zinc atom residing $0.65 \AA$ out of the $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{N}$ plane. A similarly puckered $\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{Zn}$ ring in $\mathrm{RZnN}\left(\mathrm{SiMe}_{3}\right)_{2}\left(\mathrm{R}=\left[\left\{\left(2,6-\operatorname{Pr}^{i}{ }_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{N}(\mathrm{Me}) \mathrm{C}\right\}_{2} \mathrm{CH}\right]\right)^{27}$ has been reported. However, the $\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{Zn}$ rings are planar in $\mathrm{RZn}(\mu-\mathrm{H})_{2} \mathrm{ZnR}$ $\left(\mathrm{R}=\left[\left\{\left(2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{N}(\mathrm{Me}) \mathrm{C}\right\}_{2} \mathrm{CH}\right]\right) .{ }^{25}$ The zinc atoms in $\mathbf{2}$ adopt a trigonal planar geometry, while the $\mathrm{Zn}-\mathrm{N}$ bond distances of $2.005(3)$ and $2.014(3) \AA$ are among the longest on record. ${ }^{28}$

The $\mathrm{Zn}-\mathrm{Zn}$ bond of $\mathbf{2}$ was probed by B3LYP/DZP ${ }^{++}$and BP86/ DZP^{++}density functional theory (DFT) computations on the $\mathrm{RZn}-$ $\mathrm{ZnR}\left(\mathrm{R}=\left[(\mathrm{HNCH})_{2} \mathrm{CH}\right]\right)$ model compound, $\mathbf{2 H}$ (Figure 2a). As found in 2, the perpendicular $D_{2 d}$ conformation of $\mathbf{2 H}$ is slightly favored, with the $D_{2 h}$ rotation transition state being only 0.26 (B3LYP) or $0.37 \mathrm{kcal} / \mathrm{mol}$ (BP86) higher in energy than the $D_{2 d}$ minimum. The $\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{Zn}$ rings of $\mathbf{2 H}$ are planar, rather than having the zinc atoms puckered out-of-plane, as observed experimentally in 2. Indeed, $\mathbf{2 H}$ may be regarded as an isoelectronic and a potentially metalloaromatic ${ }^{29}$ analogue of biphenyl with a central $\mathrm{Zn}-\mathrm{Zn}$ bond: two $\mathrm{C}-\mathrm{C}-\mathrm{C}$ fragments of each ring having been replaced by isoelectronic $\mathrm{N}-\mathrm{Zn}-\mathrm{N}$ units. Aromaticity was probed by computing nucleus-independent chemical shifts (NICS) ${ }^{30}$ on the simple benzene-like cyclic $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{ZnH}$ monomer. The refined $\operatorname{NICS}(0)_{\pi z z}$ value of -7.6 (based on the tensor component perpendicular to the ring ${ }^{31}$ reveals weak aromatic character (compare the -36.6 benzene and the -1.0 1,4-cyclohexadiene $\operatorname{NICS}(0)_{\pi z z}$ values at the same level).

Figure 2. Model compounds $\mathbf{2 H}$ computed (a) with $D_{2 d}$ symmetry and $\mathbf{2 H}(\boldsymbol{\mu} \mathbf{- H})_{\mathbf{2}}$ (b) with $D_{2 h}$ symmetry (all bond distances are in A).

Figure 3. Representation of the frontier molecular orbitals of $\mathbf{2 H}$ from DFT calculations. ${ }^{33}$

The bulky substituents contribute to the puckered conformation of the $\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{Zn}$ rings in 2 . Indeed, the $\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{Sn}$ ring of $\mathrm{SnCl}(\mathrm{Me})_{2}-$ $\left[\mathrm{CH}(\mathrm{CPhNSiMe})_{3}\right.$ 2 $]$ is puckered, while that of the less sterically encumbered $\mathrm{SnCl}(\mathrm{Me})_{2}\left[\mathrm{CH}(\mathrm{CPhNH})_{2}\right]$ approaches planarity. ${ }^{32}$ The computed $\mathrm{Zn}-\mathrm{Zn}$ distances of 2.392 (B3LYP) and $2.366 \AA$ (BP86) for $\mathbf{2 H}$ agree well with the experimental $\mathrm{Zn}-\mathrm{Zn}$ value of 2.3586 (7) Å for 2. The corresponding hydride-bridged $\mathrm{RZn}(\mu-\mathrm{H})_{2} \mathrm{ZnR}(\mathrm{R}$ $\left.=\left[(\mathrm{HNCH})_{2} \mathrm{CH}\right]\right)$ model compound, $\mathbf{2 H}(\boldsymbol{\mu}-\mathbf{H})_{2}$, was also examined. The $D_{2 h} \mathbf{2 H}(\boldsymbol{\mu}-\mathbf{H})_{2}$ minimum has coplanar $\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{Zn}$ rings (Figure 2b). The $\mathrm{Zn}-\mathrm{Zn}$ distances of 2.440 (B3LYP) and $2.412 \AA$ (BP86) in model $\mathbf{2 H}(\boldsymbol{\mu}-\mathbf{H})_{2}$ approach the experimental value of 2.4513(9) \AA for $\mathrm{RZn}(\mu-\mathrm{H})_{2} \mathrm{ZnR}\left(\mathrm{R}=\left[\left\{\left(2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{N}(\mathrm{Me}) \mathrm{C}\right\}_{2} \mathrm{CH}\right]\right)^{25}$ but are notably longer than those computed for $\mathbf{2 H}$ and found experimentally for $\mathbf{2}$. These computational results of the model compounds $2 \mathbf{H}$ and $2 \mathbf{H}(\boldsymbol{\mu}-\mathbf{H})_{2}$ provide further support for the structure of 2. Bubbling of H_{2} into a toluene solution of 2, however, did not result in hydride formation.

While the $\mathbf{2 H}$ LUMO (Figure 3) is entirely ligand-based with π-symmetry, the $\mathbf{2 H}$ HOMO corresponds to the $\mathrm{Zn}-\mathrm{Zn} \sigma$-bonding orbital. Natural bond orbital (NBO) analysis shows that the natural charge of the zinc atoms in $\mathbf{2 H}$ is +0.85 , consistent with the +1 oxidation state of the zinc atoms in $\mathbf{2}$ and $\mathbf{2 H}$. The $65.2 \mathrm{kcal} / \mathrm{mol}$ $\mathrm{Zn}-\mathrm{Zn}$ bond dissociation energy of $\mathbf{2 H}$ compares well with the $67.7 \mathrm{kcal} / \mathrm{mol}$ reported for $\mathbf{1}{ }^{6}{ }^{6}$ The disproportionation energy of $\mathbf{2}$ to $\mathrm{R}_{2} \mathrm{Zn}$ and Zn is $5.56 \mathrm{kcal} / \mathrm{mol}$ (B3LYP). The $\mathrm{Zn}-\mathrm{Zn}$ bond has $95 \% \mathrm{~s}, 4 \% \mathrm{p}$, and $1 \% \mathrm{~d}$ character. The NLMO/NPA $\mathrm{Zn}-\mathrm{Zn}$ bond order of 0.87 and the electron occupancy of the $\mathrm{Zn}-\mathrm{Zn}$ bonding orbital of 1.9542 are supportive of the intriguing $\mathrm{Zn}-\mathrm{Zn}$ single bond.

Acknowledgment. G.H.R., R.B.K., P.v.R.S., and H.F.S. are grateful to the National Science Foundation (CHE-0209857).

Supporting Information Available: Full details of the computations and X-ray crystallographic studies, including a cif file. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Resa, I.; Carmona, E.; Gutierrez-Puebla, E.; Monge, A. Science 2004, 305, 1136-1138.
(2) del Río, D.; Galindo, A.; Resa, I.; Carmona, E. Angew. Chem., Int. Ed. 2005, 44, 1244-1247.
(3) Parkin, G. Science 2004, 305, 1117-1118.
(4) Xie, Y.; Schaefer, H. F.; King, R. B. J. Am. Chem. Soc. 2005, 127, 28182819
(5) Kang, H. S. J. Phys. Chem. A 2005, 109, 4342-4351.
(6) Xie, Z.-Z.; Fang, W.-H. Chem. Phys. Lett. 2005, 404, 212-214.
(7) Synthesis and structure: Under an inert atmosphere of dry argon, a solution of $\mathrm{RZnI}_{2} \mathrm{Li}\left(\mathrm{OEt}_{2}\right)_{2}\left(\mathrm{R}=\left[\left\{\left(2,6-\mathrm{Pr}_{2}{ }_{2} \mathrm{H}_{3} \mathrm{C}_{6}\right) \mathrm{N}(\mathrm{Me}) \mathrm{C}\right\}_{2} \mathrm{CH}\right]\right)(2.75 \mathrm{~g}, 3.080$ mmol) in 50 mL of toluene was added to a flask containing finely cut potassium $(0.120 \mathrm{~g}, 3.080 \mathrm{mmol})$ at ambient temperature. After being stirred over 2 days, the solution was filtered. The filtrate was concentrated to 8 mL and kept standing at ambient temperature. Over 1 day, colorless crystals of $\mathrm{RZn}-\mathrm{ZnR}\left(0.70 \mathrm{~g} ; 47 \%\right.$ yield) were isolated. Mp: $190{ }^{\circ} \mathrm{C}$ (dec). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.76\left[\mathrm{~d}, 12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.06[\mathrm{~d}, 12 \mathrm{H}, \mathrm{CH}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right], 1.19\left[\mathrm{~d}, 12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.24\left[\mathrm{~d}, 12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.58(\mathrm{~s}, 12 \mathrm{H}$, $\left.\mathrm{CCH}_{3}\right), 2.99\left[\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 3.44\left[\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 4.84(\mathrm{~s}, 2 \mathrm{H}$, CH), 7.03-7.18 (m, 12H, Ar-H). Anal. (E+R Microanalytical Laboratories, Corona, NY) Calcd (found) for $\mathrm{C}_{58} \mathrm{H}_{82} \mathrm{~N}_{4} \mathrm{Zn}_{2}$ (966.08): C, 72.11 (72.06); H, 8.56 (8.65). X-ray intensity data were collected on a Bruker SMART CCD-based X-ray diffractometer system with graphite-monochromated Mo $\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$). Cell parameters and an orientation matrix for data collection corresponded to a monoclinic crystal system, with unit cell parameters $a=11.6783(15) \AA, b=18.775(3) \AA$, $c=28.507(4) \AA, \beta=97.760(3)^{\circ}, V=6193.2(15) \AA^{3}, D_{\text {calcd }}=1.135 \mathrm{~g}$ cm^{-3}, and $Z=4$ for $\mathrm{C}_{58} \mathrm{H}_{82} \mathrm{~N}_{4} \mathrm{Zn}_{2}$ (toluene). The structure was solved in the space group $P 2_{1} / c$ (No. 14) by direct methods using the SHELXTL 6.1 bundled software package. Using 8033 observed reflections ($I>2 \sigma$ (I)), refinement converged at $R 1=0.0572$ and $w R 2=0.1493$.
(8) Stender, M.; Wright, R. J.; Eichler, B. E.; Prust, J.; Olmstead, M. M.; Roesky, H. W.; Power, P. P. J. Chem. Soc., Dalton Trans. 2001, 34653469.
(9) Prust, J.; Most, K.; Muller, I.; Stasch, A.; Roesky, H. W.; Uson, I. Eur. J. Inorg. Chem. 2001, 1613-1616.
(10) Faggiani, R.; Gillespie, R. J.; Vekris, J. E. Chem. Commun. 1986, 517518.
(11) Reger, D. L.; Mason, S. S.; Rheingold, A. L. J. Am. Chem. Soc. 1993, 115, 10406-10407.
(12) Bravo-Zhivotovskii, D.; Yuzefovich, M.; Bendikov, M.; Klinkhammer, K.; Apeloig, Y. Angew. Chem., Int. Ed. 1999, 38, 1100-1102.
(13) Twamley, B.; Sofield, C. D.; Omlstead, M. M.; Power, P. P. J. Am. Chem. Soc. 1999, 121, 3357-3367.
(14) Su, J.; Li, X.-W.; Crittendon, R. C.; Robinson, G. H. J. Am. Chem. Soc. 1997, 119, 5471-5472.
(15) Li, X.-W.; Xie, Y.; Schreiner, P. R.; Gripper, K. D.; Crittendon, R. C.; Campana, C. F.; Schaefer, H. F.; Robinson, G. H. Organometallics 1996, 15, 3798-3803.
(16) Li, X.-W.; Pennington, W. T.; Robinson, G. H. J. Am. Chem. Soc. 1995, 117, 7578-7579.
(17) Wang, Y.; Quillian, B.; Yang, X.-J.; Wei, P.; Chen, Z.; Wannere, C. S.; Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem. Soc. 2005, 127, 76727673.
(18) Yang, X.-J.; Quillian, B.; Wang, Y.; Wei, P.; Robinson, G. H. Organometallics 2004, 23, 5119-5120.
(19) Su, J.; Li, X.-W.; Crittendon, R. C.; Campana, C. F.; Robinson, G. H. Organometallics 1997, 16, 4511-4513.
(20) Parks, J. E.; Holm, R. H. Inorg. Chem. 1968, 7, 1408-1416.
(21) Holm, R. H.; O'Connor, M. J. Prog. Inorg. Chem. 1971, 14, 241-401.
(22) Bourget-Merle, L.; Lappert, M. F.; Severn, J. R. Chem. Rev. 2002, 102, 3031-3065.
(23) Stender, M.; Power, P. P. Polyhedron 2002, 21, 525-529.
(24) Chai, J.; Zhu, H.; Stückl, C.; Roesky, H. W.; Mogull, J.; Bencini, A.; Caneschi, A.; Gatteschi, D. J. Am. Chem. Soc. 2005, 127, 9201-9206.
(25) Hao, H.; Cui, C.; Roesky, H. W.; Bai, G.; Schmidt, H. G.; Noltemeyer, M. Chem. Commun. 2001, 1118-1119.
(26) Bergquist, C.; Koutcher, L.; Vaught, A. L.; Parkin, G. Inorg. Chem. 2002, 41, 625-627.
(27) Cheng, M.; Moore, D. R.; Reczek, J. J.; Chamberlain, B. M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 8738-8749.
(28) Cheng, M.; Attygalle, A. B.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 1999, 121, 11583-11584.
(29) Robinson, G. H. Acc. Chem. Res. 1999, 32, 773-782.
(30) Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes, N. J. R. v. E. J. Am. Chem. Soc. 1996, 118, 6317-6318.
(31) Heine, T.; Schleyer, P. v. R.; Corminboeuf, C.; Seifert, G.; Reviakine, R.; Weber, J. J. Phys. Chem. A 2003, 107, 6470-6475.
(32) Hitchcock, P. B.; Lappert, M. F.; Liu, D.-S. Chem. Commun. 1994, 16991700.
(33) Computations: All the structures were optimized at the DFT level (B3LYP and BP86) with DZP ++ basis set with the Gaussian-94 program (reference in Supporting Information).
JA053819R

